Journal of Organometallic Chemistry, 358 (1988) 245-272 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Unexpected ring opening of cycloaminocarbene complexes of chromium upon alkyne insertion reactions

H. Rudler *, A. Partier, R. Yefsah, B. Denise

Laboratoire de Chimie Organique, Université P. et M. Curie, UA 408, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

J.C. Daran, J. Vaissermann and C. Knobler,

Laboratoire de Chimie des Métaux de Transition, Université P. et M. Curie, UA 604, 4 Place Jussieu 75252 Paris Cedex 05 (France)

(Received May 6th, 1988)

Abstract

Aminocarbenechromium complexes of the general structure $(CO)_5Cr=C(R)N-(CH_2)_n XCH_2$ (n = 0, $X = CH_2$; n = 1, $X = CH_2$; n = 1, X = CH=CH; n = 2, X = CH=CH; $R = CH_3$, Ph) react with alkynes to give, by insertion of one or two molecules of alkyne and one molecule of CO, and C-N bond cleavage, new polycyclic heterocycles. The reactions of the pyrroline-, the tetrahydropyridine-, the pyrrolidine- and the methylaziridine-substituted complexes are mainly considered, and the results of X-ray structural studies of the new products are presented. The mechanism of the rearrangement of a 1,5 dipole is discussed.

Introduction

Since their discovery by Fischer in 1964 [1], carbene complexes of transition metals have been the subject of much research activity. Much work has been directed towards the applications of these new species in organic synthesis. Because of the analogy that can be drawn between organic carbenes and these complexes, one of the first applications was the cyclopropanation of olefins, and it was shown that activated olefins such as enol esters and unsaturated esters reacted with the complexes to give cyclopropanes. It was later found that unactivated olefins could be cyclopropanated intramolecularly [3,4].

The discovery that such species are involved in the olefin metathesis reaction and in the alkyne polymerization and oligomerization reactions [6] broadened even further the scope of their application.

Examples include the benzannulation reaction, discovered by Doetz in 1975 [7,8] and mainly developed by other groups [9], the coupled alkyne insertion/olefin

cyclopropanation reactions [10] studied in our group, and the intramolecular double alkyne insertion reaction [11].

We describe here a previously unobserved reaction which is coupled with the alkyne insertion reaction, namely the ring-opening with C-N bond cleavage of a series of cycloaminocarbene complexes of chromium [12].

Results

As a continuation of our work on the coupled alkyne insertion/olefin cyclopropanation reactions [10,13], we synthesized a series of aminocarbene complexes of chromium and studied their behaviour in the alkyne insertion reaction. Thus complex 4, like its analog of tungsten 1, reacts with alkynes to give compounds of the general structure 6. In the reaction with RC=CPh, the insertion-cyclopropanation product was isolated as the arenechromium complex 7 [14].

Bearing in mind the behaviour of the tungsten complexes bearing more elaborate alkene-carbene ligands such as 8, which undergo the double bond coordination reaction to give 10, we synthesized a series of carbene complexes of structure 11 containing the unsaturated cycloamino substituent. Unlike complexes 8, complexes 11 do not undergo the double bond coordination reaction to give complexes of the structure 12 even in boiling toluene. This behaviour can be attributed to the special structure of aminocarbene complexes, which are best described as 1,3 dipoles, involving a C=N double bond and a chromium carbon bond with a multiplicity closer to one than to two [15–17].

This general feature is illustrated by the structure of complex 13 (n = 1) which is obtained as pale yellow needles (m.p. 107°C): the ORTEP view, shown in Fig. 1 reveals that the organic ligand, containing the carbene-carbon atom and the pyrroline substituent, is almost planar, with its carbon-carbon double bond lying well removed from the metal centre. The Cr-C(1) bond (2.123 Å) is much longer than expected for a metal-carbon double bond, whereas the C(1)-N(1) bond (1.300 Å) is best described as a carbon-nitrogen double bond.

Reaction of complexes 13 and 16 with diphenylacetylene

It has been shown by Yamashita [18] that aminocarbene complexes of Cr react in refluxing DMF with alkynes to give insertion products. When a solution at complex 13 in benzene was refluxed for 6 h, a new complex was isolated (after silica gel chromatography) as orange crystals (m.p. 188°C 58% yield). Its ¹H and ¹³C NMR spectra are consistent with there having been insertion of one molecule of alkyne into the starting complex with formation of an arene-chromium complex, and show the presence of a methyl group on a tertiary carbon, a disubstituted double bond, an NCH₂ group, and an additional CH₂ group. The IR spectrum confirms the presence of a ketone (ν (CO) 1680 cm⁻¹) and a Cr(CO)₃ group. The presence of the double bond confirms that no cyclopropanation has taken place. The presence of only one N-CH₂ group is an indication that a major rearrangement has taken place. Only structure 14 was in agreement with the spectroscopic data, and this structure was confirmed by an X-ray diffraction study.

Fig. 1. ORTEP projection for complex 13.

Suitable crystals of 14 were grown from $CH_2Cl_2/EtOH$. An ORTEP view of 13 is shown in Figure 1, and of 14 in Fig. 2. It confirms that the carbene moiety has been inserted into one of the N-CH₂ bonds of 13, and complex 14 is thus the result of an insertion of alkyne and CO combined with an unexpected rearrangement.

Treatment of complex 14 in boiling pyridine for 4 h gives 15, as white crystals (m.p. 122°C). The ¹H NMR spectrum of the product shows the presence of 10 aromatic protons (multiplet at 7.30 ppm), a disubstituted double bond at 5.89 ppm, two magnetically different NCH protons at 4.70 and 3.69 ppm, a CH₂ group at 2.43 ppm, and finally a methyl group on a tertiary carbon atom, at 1.30 ppm.

Similar behaviour is observed for complex 16 which upon reaction with diphenylacetylene gives a mixture of 17 (32.6%, m.p. 95°C) and 18 (49.5%, m.p. 88°C). The ¹H NMR spectrum of 17 confirms the structural analogy between the methyl- and the phenyl-substituted compounds, but 17 is much less stable than compound 14 and undergoes rapid air oxidation in solution to give 18 directly.

Reaction of complexes 19 and 24

Tetrahydropyridine reacts at room temperature with methylethoxy and phenylethoxychromium(0) carbene complexes to give complexes 19 and 24, respectively, in about 85–90% yield. Owing to the 1,3-dipolar structure of these carbene complexes and to the dissymetry of the cycloamine, they exist as pairs of E, Z-isomers around the carbon-nitrogen double bond. This shows up clearly in the ¹³C NMR spectra where all signals but that from C(1) can be distinguished. For example, in the case

Fig. 2. ORTEP projection for complex 14.

of 19-E, Z, there are signals from the double bond carbons at 126.9, 122.3, 125.7 and 124.8 from C(6) at 27.04 and 27.06, from C(4) at 39.6 and 38.2, from C(3) at 50.1 and 49.6, and from C(7) at 58.3 and 61.4 ppm.

Complex 19 reacts with PhC=CPh in boiling benzene during 12 h to give two new complexes. These were separated on silica gel and fully characterized by their spectroscopic data and by X-ray diffraction studies. The faster moving complex was assigned structure 20 on the following grounds. Firstly the mass and the IR spectra indicate that this complex is the result of the insertion of the alkyne and of CO into 19. The presence of an arenechromium moiety is also present in the ¹H and ¹³C NMR spectra with ¹H signals at 6.14, 5.83 and 4.35 ppm, and ¹³C signals at 232.7, 93.9, 93.5, 92.0, and 91.3 ppm. The signals from two non-equivalent hydrogens on the carbon-carbon double bond appear at 5.66 and 5.24 ppm. Again the methyl group of the starting complex gives rise to a singlet at high field, and this rules out a rearrangement of the framework. The structure of this complex was confirmed by an X-ray diffraction study which showed that the type of rearrangement noted in the previous example had taken place, giving in this case a 5,7 fused ring system. An ORTEP view is shown in Fig. 3.

The second complex was assigned structure 21. The presence of the CO group of the arenechromium and that of a methyl group on a quaternary carbon atom were established as for complexes 14, 17 and 20. There is a striking difference however, in the ¹H NMR spectrum, where signals due to a vinyl group are clearly evident, and

Fig. 3. ORTEP projection for complex 20.

thus the disubstituted double bond of the starting complex 19 has been transformed into a mono-substituted double bond. Structure 21 was also confirmed by an X-ray diffraction. The ORTEP view shown in Fig. 4: in the crystal 21 was associated with one molecule of the solvent MeOH (which can be observed in the ¹H NMR spectrum), the solvent being associated through a hydrogen bond with the carbonyl group of the ketone.

The Cr(CO)₃ groups in 20 and 21 can be removed by treatment with boiling pyridine. Thus complex 20 gives 22 (m.p. 168°C), which was fully characterized from its NMR spectrum, which shows signals due to 10 hydrogens at 7.3 ppm, the olefinic hydrogens at 6.08 and 5.77 ppm two non-equivalent NCH hydrogens at 4.49 and 3.09 ppm, and the remaining CH₂ group as a multiplet at 2.46 ppm. In the case

Fig. 4. ORTEP projection for complex 21.

of compound 23, all the hydrogen atoms are non-equivalent, as shown by the ¹H NMR spectrum (Fig. 5) recorded at 200 MHz. Complex 24 reacts in the same way with PhC=CPh, but gives, along with the expected complexes 25 and 26, the $Cr(CO)_3$ -free compounds 27 and 28. The mixture was thus treated directly with pyridine and the major product of the reaction, the 5,5 fused ring system 28, characterized by analysis and spectroscopic data.

Reaction of saturated cycloaminocarbene complexes 29 and 31 with $PhC \equiv CPh$

In order to ascertain whether or not the insertion reaction is limited to aminocarbene complexes containing a carbon-carbon double bond in the cycle, we investigated the reactions of complexes 29 and 31, the first one a typical saturated complex and the second falling between a saturated and an unsaturated aminocarbene complex.

Reaction of complex 29. Complex 29 is obtained as pale-yellow crystals (m.p. 72°C, 90%) by aminolysis of the corresponding ethoxycarbene complex. In the ¹H NMR spectrum of 29, the protons of the two N-CH₂, E and Z with respect to the metal, appear as two multiplets at 3.58 and 4.13 ppm, with the two CH₂ groups β to the nitrogen being almost equivalent.

The complex reacts with PhC=CPh in boiling benzene to give, after 16 h, among other products, a crystalline complex (m.p. 120 °C, 12%) the ¹H NMR spectroscopic data for which correspond to those of 14, 20 and 21 showing signals from one phenyl group at 7.02 ppm (multiplet), one arenechromium group at 5.18 4.76 and

Fig. 5. ¹H NMR (200 MHz) of compound 23.

4.25 ppm, two magnetically different N-CH protons, at 3.39 and 2.43 ppm, three CH₂ groups at 2.04, 1.88 and 1.29 ppm, and one CH₃ group as a singlet at 1.50 ppm. However the fact that the CH₃ group (δ 1.5 ppm) is on a carbon-carbon double bond rather than at a ring junction (δ 0.80 ppm in 14), together with the appearance of an IR bond at 1760 cm⁻¹, indicated that this complex cannot have

Fig. 6. ORTEP projection of complex 30.

the expected structure 31. This conclusion was confirmed by the X-ray study, which showed that the rearrangement had taken place, but that a new carbon-carbon coupling had occurred to give complex 30.

An ORTEP view of this complex is shown in Fig. 6, and confirms that, as in the previous cases, insertion of PhC=CPh had taken place along with C-N cleavage.

Reaction of complex 33. Complex 33 is readily prepared from commercially available methylaziridine. It exists as a 50/50 mixture of E/Z isomers: all the carbon atoms except for those of the CO ligand give rise to doublets in the ¹³C NMR spectrum.

Complex 33 is much more reactive towards alkynes than the complexes considered above. The insertion reaction is complete within about 2 h in boiling benzene, and leads to two new complexes. The major product was isolated as bright-red crystals (m.p. 260 °C) by recrystallization of the mixture from hexane/methylene chloride. Its ¹H NMR spectrum shows that two molecules of alkyne have been inserted into the starting complex 33 and that the signals due to the N-CH₂ and the CH-CH₃ groups of the aziridine are still present. However, the chemical shift of the signal from the methyl group of the carbene, 2.48 ppm, indicates that it is located on a conjugated system. The IR spectrum is in agreement with the presence of a Cr(CO)₃ group and of a five-membered ring ketone (ν (CO) 1760 cm⁻¹).

Fig. 7. ORTEP projection of complex 34.

Taken together, these spectroscopic data are consistent only with structure 34 and this was verified by the X-ray diffraction study. The ORTEP view, in Fig. 7, confirms that two molecules of alkyne have been inserted, that the aziridine ring, like the other ring-systems, has been opened, and that a five-membered ring ketone is also present. Surprisingly, the $Cr(CO)_3$ group is bound both to the diene and to the nitrogen atom at the ring junction. According to the ¹H NMR spectrum, the minor product of the reaction (~ 5%), is the isomer 35 of 34.

Complex 36 shows the same behaviour towards PhC=CPh and gives a mixture of complexes 37 and 38 in about 18% yield.

Discussion

All the results described above confirm that the ring-opening reaction, induced by the alkyne insertion is general. The structure of the products is highly dependent on the nature of the cycloamine and on the presence or absence of a double bond β to nitrogen. However a distinction has to be made the first three examples and the aziridine case. In the first three cases an unsaturated lactam is formed, but insertion of CO between the alkyne and the nitrogen is observed. A mechanism which could account for the reactions of complex 19, for example, is as follows: The first step of all the insertion reactions is probably decoordination of one CO group by the alkyne to give the intermediate 39. Insertion of the alkyne could then lead to the new 1,5-dipole 40. Recoordination of the electron-deficient carbon-nitrogen double bond to the electron-rich, coordinatively unsaturated metal centre could then give complex 41. This complex can be regarded as a chromium-nitrogen-centered 1,2 ylid. Such a structure is reminiscent of the well known organic carbon-nitrogen 1,2 ylids which promote the Stevens rearrangement [19,20], and so the intermediate 41 might undergo a rearrangement, as 42 does, to give on the one hand the seven-membered ring system via 43, and on the other hand the five-membered ring system via 44 (allylic rearrangement). The presence of the metal centre then allows the

(44)

C(1)-C(3) or the C(1)-C(5) coupling and the CO insertion reaction to occur with ultimate formation of the α,β -unsaturated lactams. It is clear that the coupling reaction could also occur between C(3) and C(9) and this is observed in the transformation of complex 29 into complex 30, via the intermediate 45.

In the case of complex 33, it is probable that the insertion of one molecule of alkyne would lead to very strained intermediates, and so there is insertion of two molecules of alkyne leading to the triene 46, the electrocyclization of which could give 47, and then, by CO insertion, complex 34. It is noteworthy that in the case of

(47)

phenyl-substituted carbene complexes such as 16 and 24, no benzannulation, the organometallic analog of the Sommelet-Hauser reaction, takes place [21].

In conclusion we note that we have discovered a new reaction promoted by transition metal carbene complexes which can be related to the organic Stevens rearrangement. Since this reaction can be used with a wide variety of complexes and substrates, it may find application in the field of alkaloid synthesis.

Work is in progress to explore the scope and limitations of this new reaction and to establish its mechanism.

Experimental

All reactions were carried out in oven-dried glassware under nitrogen. Benzene, diethyl ether (Et₂O) and tetrahydrofuran (THF) were distilled from LiAlH₄. Preparative column chromatography was performed with 70–230 mesh Merck silica gel, and preparative (PLC) and thin layer chromatography (TLC) with Merck G60 silica gel. Light petroleum ether (PE) was used as eluent.

NMR spectra were recorded on a JEOL FX-90 spectrometer or on a Bruker WM 200 or WM 500 spectrometer. IR spectra were recorded with a Beckman 4240 spectrophotometer and mass spectra with a Kratos MS 3P. Melting points were determined on a Reichert Köfler block and are uncorrected.

Complex 13. To a solution of $(CO)_5 Cr=C(CH_3)(OCH_2CH_3)$ (5.7 g, 2.16×10^{-2} mol) in Et₂O (250 ml) at room temperature was added 3-pyrroline (4.5 ml) (a commercial sample containing 20% of piperidine). The reaction was monitored by TLC. After 15 min, all the starting complex had disappeared. Evaporation of the solvent gave complex 13 (6.2 g, 10%), which was recrystallized from EtOH/CH₂Cl₂ to give yellow crystals (m.p. 107°C).

¹H NMR (200 MHz, C_6D_6): δ 4.98 (2H, dm, J 1.6 Hz), 4.36 (2H, s, C(3)), 2.90 (2H, s, C(6)), 2.00 (3H, s, C(2)). ¹³C NMR (25 MHz, C_6D_6): δ 270.6 (C(1), 223.5, 218.7 (CO), 125.8 and 124.0 (C(5)–C(4)), 65.3 (C(3)), 57.7 (C(6)), 40.7 (C(2)); *m/z*: 287 (*M*⁺) (Found: C, 46.1; H, 2.98; N, 4.81. $C_{11}H_9NO_5Cr$ calcd.: C, 45.99; H, 3.13; N, 4.88%).

Complex 14. A solution of complex 13 (2.9 g, 10^{-2} mol), and PhC=CPh (1.8 g, 10^{-2} mol) in benzene (150 ml) was refluxed for 12 h. After evaporation of the solvent, the residue was chromatographed on silica gel. Elution with PE/acetone (92/8) first gave product 15 (0.7 g). Elution with PE/acetone (80/20) then gave complex 14 (1.2 g, total yield 58%).

Complex 14: orange crystals, m.p. 188°C; IR 1970, 1900 and 1680 cm⁻¹ (ν (CO)); ¹H NMR (C₆D₆, 200 MHz) δ 7.00 (5H, m), 5.98 (2H, m, CH=CH), 5.25 and 4.34 (5H, m, Ar-Cr), 4.64 (1H, dd, *J* 19.2 Hz, NCH), 3.23 (1H, dd, *J* 19.2 Hz, NCH), 1.92 (1H, dd, *J* 16.8 Hz, C(3)–H), 1.56 (1H, dd, *J* 16.8 Hz, C(3)–H), 0.85 (3H, s, CH₃). ¹³C NMR (50.1 MHz, CDCl₃): δ 232.7 (CO), 161.7 (CO, lactam), 133.0, 129.3, 129.0, 128.1 and 126.1 (C aromatic), 123.4 and 121.7 (C(4)–C(5)), 98.7 (NCCH₂), 94.1, 93.7, 92.3, 91.2, 91.1 (Ar-Cr), 61.0 (N–C(CH₃)), 38.0 (N–CH₂), 20.4 (CH₃); *m/z*: 437 (*M*⁺) (Found: C, 66.06; H, 4.17; N, 3.08. C₂₄H₁₉NO₄Cr calcd.: C, 65.90; H, 4.35; N, 3.20%.)

Compound 15. Complex 14 (1.2 g) was refluxed in pyridine (30 ml) for 6 h. Evaporation of the solvent and chromatography of the residue on silica gel with $80/20 \text{ PE/CH}_2\text{Cl}_2$ as eluent gave a white solid (0.94 g, 95%). Recrystallization

from EtOH/CH₂Cl₂ gave white crystals m.p. 122°C; IR 1680 cm⁻¹ (ν (CO)); ¹H NMR (200 MHz, CDCl₃) σ 7.31 (10H), 5.8 (2H, m), 4.70 (1H, d, N–CH), 3.70 (1H, d, N–CH), 2.43 (2H, m, CH₂), 1.30 (3H, s, CH₃) m/z: 301 (M^+). (Found: C, 82.80; H, 6.36; N, 4.56. C₂₁H₁₉NO calcd.: C, 83.7; H, 6.97; N, 4.65%.)

Complex 16. Pyrroline (2 equiv.) was added to a solution of $(CO)_5Cr=C(Ph)-(OCH_2CH_3)$ (3 g, 92 mmol), in Et₂O (150 ml) at room temperature. After 30 min the solvent was evaporated and the residue chromatographed on silica gel with 80/20 PE/CH₂Cl₂ as eluent to give complex 16 (3.25 g, 100%). Recrystallization from PE/CH₂Cl₂ gave yellow crystals m.p. 108-110 °C. ¹H NMR (200 MHz, CDCl₃): δ 7.45 (2H, m), 7.720 (1H, m), 6.35 (2H, m), 6.10 (1H, m), 5.80 (1H, m), 5.05 (2H, s, N-CH₂), 4.00 (2H, s, N-CH₂). m/z: 349 (M^+).

Complex 17. A solution of complex 16 (3 g, 8.6 mmol), and PhC=CPh (1.8 g) was refluxed in benzene for 12 h. After evaporation of the solvent, the residue was chromatographed on silica gel. Elution with PE/acetone (90/10) first gave complex 17 (1.4 g); elution with PE/acetone (80/20) and then the organic product 18 (1.55 g) as a white solid.

Complex 17, m.p. 105–110 °C (dec.). ¹H NMR (200 MHz, CDCl₃): δ 7.42, 6.73 (10H, m), 6.23, 5.37, 5.27, 4.46 and 4.20 (5H, m, Ar–Cr), 5.81 (2H, m), 4.62 (1H, d, J 16 Hz), 3.31 (1H, d, J 16 Hz), 2.92 (1H, d, J 16 Hz), 2.38 (1H, d, J 16 Hz). m/z: 499 (M^+).

Compound 18. A solution of complex 17 (1.4 g) was refluxed in pyridine for 8 h. Evaporation of the solvent followed by chromatography on silica gel with 80/20 PE/CH₂Cl₂ as eluent gave a white solid (1.04 g), which was recrystallized in MeOH/CH₂Cl₂ to give white crystals m.p. 88–90 °C; IR 1680 cm⁻¹ (ν (CO)). ¹H NMR (200 MHz, CDCl₃) δ 7.24, 6.71 (15H, m), 5.87 (1H, m), 5.71 (1H, m), 4.65 (1H, d, J 18 Hz), 3.31 (1H, d, J 18 Hz), 3.07 (1H, d, J 18 Hz), 2.46 (1H, d, J 18 Hz), m/z 363 (M^+). (Found: C, 82,52; H, 5.92; N, 3.61. C₂₈H₂₅NO₂ calcd.: C, 82.02, H, 6.3; N, 3.54 %.)

Complex 19 E,Z. Tetrahydropyridine (1.8 g, 21.7 mmol) was added at room temperature to a solution of $(CO)_5Cr(CH_3)(OCH_2CH_3)$ (3.8 g, 14.3 mmoles) in Et₂O (150 ml). After 6 h the solvent was evaporated to leave an oil (3.3 g, 74%). Recrystallization from PE/CH₂Cl₂ gave crystals of one of the isomers; m.p. 70–71°C. ¹H NMR (200 MHz, C₆D₆) δ 5.38 (1H, m), 4.80 (1H, m), 3.94 (2H, m), 2.96 (2H, s), 2.10 (3H, s), 1.89 (2H, m). ¹³C NMR (50.1 MHz, CDCl₃): δ 267.0 (C(1)), 223.6, 217.8 (CO), 126.9 (124.8 (C=C), 58.3 (C(3)), 50.1 (C(7)), 39.7 (C(2)), 27.4 (C(6)). m/z 301 (M^+)

Complexes 20 and 21. A solution of complex 19 (0.8 g, 2.7 mmol) and PhC=CPh (0.8 g, 3 mmol) in benzene was refluxed for 12 h. After evaporation of the solvent the residue was chromatographed on silica gel. Elution with PE/acetone (90/10) gave a mixture of complexes 20 and 21. Careful chromatography of this mixture gave pure samples of both complexes (total yield 0.66 g, 58%).

Complex 20. Yellow crystals, m.p. 168°C. ¹H NMR (200 MHz, C_6D_6): δ 7.10 (5H, m), 6.14 (1H, d), 5.83 (1H, m), 5.66 (1H, m), 5.26 (1H, m), 4.35 (4H, m), 2.53 (1H, m), 2.15 (1H, m), 1.95 (2H, d), 1.80 (1H, m), 0.93 (3H, s). ¹³C NMR (50.1 MHz, C_6D_6): δ 232.7 (Cr(CO)₃), 161.1 (C + O), 133.2, 131.1, 129.2, 128.9, 128.4, 127.6 (Ar), 126.1, 125.4 (C(8), C(9)) 98.9, 93.9, 93.5, 92.0, 91.3 (Ar–Cr), 65.8 (C(1)), 36.9 (C(7)), 36.0 (C(3)), 28.1 (C(6)), 19.7 (C(2)). m/z 395 (M^+ – 2CO).

Complex 21. Orange-yellow crystals, m.p. 166°C. IR 1980, 1900 and 1680 cm⁻¹ (ν (CO)). ¹H NMR (200 MHz, C₆D₆): δ 7.15 (5H, m), 6.14 (1H, d), 5.74 (1H,

dq), 5.10 (1H, d), 5.05 (1H, m), 4.98 (1H, d), 4.52 (2H, m), 4.10 (1H, t), 3.78 (1H, m), 3.25 (3H, s, CH₃OH), 3.02 (1H, m), 2.42 (1H, m), 2.08 (1H, m), 1.70 (1H, m), 0.88 (3H, s). ¹³C NMR (50.1 MHz, C_6D_6): δ 232.5 (Cr(CO)₃), 170.9 (C=O), 136.8, 132.9, 129.4, 129.1, 128.8, 128.2 (Ar), 116.2, 117.7 (C(8), C(9)), 96.3, 93.5, 92.7, 90.3, 89.6, (Ar-Cr), 75.1 (C(1)), 49.2 (C(7)), 40.0 (C(5)), 34.8 (C(6)), 23.0 (C(2)). *m/z* 395 (*M*⁺ - 2CO). (Found: C, 82.73; H. 6.88; N, 4.12. $C_{25}H_{21}O_4$ NCr calcd.: C, 82.24; H, 6.5; N, 4.3%.)

Compound 22. Complex 20 (0.2 g) was refluxed in pyridine for 12 h. After evaporation of the solvent the residue was chromatographed on silica gel with 80/20 PE/CH₂Cl₂ as eluent to give white crystals of 22 (0.12 g); m.p. 168–170 °C. IR 1680 cm⁻¹ (ν (CO)). ¹H NMR (200 MHz, C₆D₆): δ 7.40 (10H, m), 6.10 (1H, m), 5.71 (1H, m), 4.49 (1H, d), 3.09 (1H, m), 2.42 (4H, m), 1.47 (3H, s). *m/z* 321 (*M*⁺). (Found: C, 80.08; H, 6.73; N, 4.09. C₂₂H₂₁ON calcd.: C, 82.2; H, 6.5; N, 4.3%.)

Compound 23. Complex 21 (0.45 g) was refluxed in pyridine for 12 h, and work up as for compound 22 gave 23 (0.3 g) as white crystals, m.p. 180 °C; IR 1680 cm⁻¹ (ν (CO)). ¹H NMR (200 MHz, CDCl₃): δ 7.28 (10H, m), 5.59 (1H, dt), 5.15 (2H, dd), 3.80 (1H, q), 3.40 (1H, t), 3.00 (1H, t), 2.77 (1H, m), 2.28 (1H, m), 1.32 (3H, s). m/z 321 (M^+) (Found: C, 82.73; H, 6.88; N, 4.17. C₂₂H₂₁ON calcd.: C, 82.24; H, 6.5; N, 4.3%.)

Complex 24 E,Z. Tetrahydropyridine (2 g) was added to a solution of $(CO)_5Cr=C(Ph)(OCH_2CH_3)$ (4 g, 12 mmol) in Et₂O (100 ml). After 2 h the solvent was evaporated and the residue purified as described for compound 22 over silica gel to give (E,Z) 24 as a yellow solid (3.9 g, 87%). ¹H NMR (200 MHz, CDCl₃): δ 7.32, 6.71 (5H, m), 5.95 (3H, m), 5.42 (1H, m), 5.0 (2H, s), 4.60 (2H, t), 3.89 (2H, m), 3.58 (2H, t), 2.65 (2H, m), 2.15 (2H, m). ¹³C NMR (50.1 MHz, CDCl₃): δ 272.0 (C(1)), 224.0, O, 217.0 (CO), 128.6, 126.6, 125.9, 124.1, 123.0, 119.1, 118.9 (2C=C, C(aromatic)). 59.7, 57.2, 54.1, 51.9 (2N-C), 28.0, 27.5 (2 C-C-C=). m/z 363 (M^+).

Complexes 25 and 26. A solution of complex 24 (3.2 g, 8.7 mmol) and PhC=CPh (1.8 g) in benzene (50 ml) was refluxed for 8 h. After evaporation of the solvent the residue was chromatographed on silica gel. Elution with PE/acetone (90/10) gave a mixture of complexes 25 and 26 and the organic products 27 and 28 (2.2 g). A sample of 26, the most important product, was purified by TLC.

Compound **26**, orange crystals, m.p. 65°C; IR 1680 cm⁻¹ (ν (CO)). ¹H NMR (200 MHz, C₆D₆): δ 7.65, 7.01 (15H, m), 5.75 (1H, dt, CH=CH₂), 5.05 (2H, dd, CH=CH₂), 3.90 (1H, q, N-CH), 3.25 (1H, q, N-CH), 3.08 (1H, m, CH-CH=CH₂), 1.7 (2H, m, CH₂). *m/z* 377 (*M*⁺).

Complex 29. Pyrrolidine (1.5 g) was added to a solution of $(CO)_5Cr=C(CH_3)$ (OCH₂CH₃) (2.64 g, 26.4 mmol) in Et₂O (50 ml) at room temperature. After 5 h the solvent was evaporated chromatography of the residue on silica gel with 80/20 PE/CH₂Cl₂ as eluent gave complex 29 (2.4 g, 86%) as a yellow solid, m.p. 72°C. ¹H NMR (200 MHz, CDCl₃): δ 4.13 (2H, m, N-CH₂), 3.58 (2H, m, N-CH₂), 2.66 (3H, s, CH₃), 2.11 (4H, m, CH₂-CH₂). ¹³C NMR (50.1 MHz, CDCl₃): δ 268.9 (C(1)), 224.1, 218.9 (CO), 61.24 (N-C), 53.24 (C-N), 41.41 (CH₃), 26.11 (CH₂), 25.73 (CH₂). m/z 289 (M^+).

Complex 30. A solution of complex 29 (1.45 g, 10 mmol) and PhC=CPh (1 g) in benzene (50 ml) was refluxed for 12 h. After evaporation of the solvent, the residue was chromatographed on silica gel. Elution with PE/acetone (95/5) gave complex 30 (0.25 g, 12%) as a yellow solid. Recrystallization from PE/CH₂Cl₂ gave yellow crystals, m.p. 120 °C. IR 1980, 1890, 1740 cm⁻¹ (ν (CO)). ¹H NMR (200 MHz,

Crystallographic data

	Cr(CO) ₅ (C ₆ H ₉ N) (13)	$Cr(CO)_3(C_{21}H_{19}ON)$ (14)	$Cr(CO)_3(C_{21}H_{21}ON)$ (30)
fw	287.2	437.4	439.4
crystal dimensions (mm)	0.4×0.35×0.2	0.5×0.5×0.18	$0.5 \times 0.5 \times 0.1$
crystal system	monoclinic	monoclinic	monoclinic
space group	$P2_1/n$	$P2_1/n$	P2 ₁ /a
a (Å)	12.975(3)	13.011(4)	14.059(4)
b (Å)	11.811(2)	11.196(6)	12.746(1)
	8.318(3)	14.772(2)	12.498(5)
β(°)	96.80(1)	108.24(4)	110.76(1)
$V(\dot{A}^3)$	1266	2044	2094
Z	4	4	4
$D_{c} (g \mathrm{cm}^{-3})$	1.51	1.42	1.39
μ (Mo- K_{a}) (cm ⁻¹)	8.91	5.74	5.6
diffractometer	PW1100	PW1100	PW1100
reflexions measured	2326	3575	3497
reflexions merged	2144 (0.0243)	3359 (0.0159)	3240 (0.0182)
reflexions kept	1923	2639	2442
$(F > 3\sigma(F))$			
R	0.026	0.051	0.036
R _w	0.027	0.052	0.037
data/parameters	10	8.2	7.3
	C ₂₅ H ₂₁ O ₄ NCr 20	C ₂₅ H ₂₁ O ₄ Cr, CH ₃ OH 21	C ₃₇ H ₂₉ O ₄ NCr 34
fw	451.4	483.5	603.6
crystal dimensions	$0.25 \times 0.20 \times 0.1$	0.32×0.32×0.45	0.7×0.3×0.06
crystal system	monoclinic	triclinic	monoclinic
space group	P21/c	PĪ	P21/a
a (Å)	10.994(4)	9.057(2)	18.189(4)
b (Å)	19.117(4)	10.955(2)	11.255(6)
c (Å)	11.240(6)	13.983(4)	15.018(1)
α(°)	90.0	73.96(2)	90.0
β(°)	118.60(3)	77.36(2)	94.68(2)
γ (°)	90.0	64.09(2)	90.0
$V(Å^3)$	2074	1192	3058
Z	4	2	4
$D_{\rm c} ({\rm g} {\rm cm}^{-3})$	1.45	1.347	1.31
$\mu(Mo-K_{\alpha}) (cm^{-1})$	5.68	5.02	4.03
diffractometer	CAD4	CAD4	CAD4
reflexions measured	3846	4212	5223
reflexions merged (R)	3646(0.032)	4035(0.010)	4885(0.024)
reflexions kept	2049	3338	3267
$(I > 3\sigma(I))$		A A IA	0.040
R	0.0511	0.042	0.042
R _w	0.0591	0.043	0.043
data/parameters	7.3	9.7	6.8

 C_6D_6 : δ 7.10, 6.61 (5H, m), 5.18, 4.77, 4.39, 4.28, 4.10 (5H, Ar-Cr), 3.39 (1H, dd), 2.43 (1H, m), 2.02 (2H, m), 1.90 (2H, m), 1.50 (3H, s), 1.23 (2H, m). m/z 439 (M^+). Complex **30** slowly decomposes into complex **32**, the structure of which has not yet been established.

Complex 33. To a solution of $(CO)_5Cr=C(CH_3)(OCH_2CH_3)$ (5 g, 19 mmol) in Et₂O (100 ml) was added freshly distilled methylaziridine (two-fold excess, 2 ml). After 1 h work-up, as described for complex **29**, a yellow oil was formed (4.5 g, 86%).

33*E*. δ ¹³C NMR (50.1 MHz, C₆D₆): δ 16.1 (C(5)), 30.9 (C(2)), 35.0 (C(4)), 39.6 (C(3)), 218.6, 223.6 (CO), 265 (C(1)).

33Z. ¹³C NMR: δ 16.3 (C(5)), 32.4 (C(2)), 36.0 (C(4)), 40.5 (C(3)), 218.6, 223.6 (CO), 268 (C(1)). m/z 275 (M^+) (Found: C, 43.97; H, 3.13; N, 5.23. $C_{10}H_9O_5NCr$ calcd.: C, 43.64; H, 3.27; N, 5.09%.)

Complex 34. A solution of complex 33 (2 g, 7.2 mmol) and PhC=CPh (1.5 g) in benzene (50 ml) was refluxed for 2 h. After evaporation of the solvent, the residue was chromatographed on silica gel. Elution with PE/CH₂Cl₂ (80/20) gave a red solid (1.25 g, 26%). Recrystallization from PE/CH₂Cl₂ gave bright red crystals of complex 34, m.p. 260 °C; IR 1950, 1880, 1850 and 1760 cm⁻¹ (ν (CO)). ¹H NMR (200 MHz, CD₂Cl₂): δ 7.3 (20H, m), 3.51 (1H, t), 3.46 (1H, m), 3.12 (1H, t), 2.31 (3H, s), 1.19 (3H, d). ¹³C NMR (50.1 MHz, CD₂Cl₂): δ 230.0 (Cr(CO)₃), 206.5 (=CO), 137.4–126.4 (Ar), 117.6, 108.6, 104.6, 83.0 (C(8), C(9), C(10), C(1)), 76.6 (C(7)), 54.1 (C(3)), 42.6 (C(4)), 17.5 (C(2)), 13.7 (C(5)). IR 1900, 1880, 1850, 1760 cm⁻¹ (KBr, ν (CO)). m/z 603 (M^+). Also 0.05 g on complex 35 was obtained as a red powder. ¹H NMR (200 MHz, CDCl₃): δ 7.25 (20H), 3.69 (1H, t, N-CH), 2.95 (1H, d, N-CH), 2.5 (1H, m, CH-CH₃), 2.40 (3H, s, CH₃), 1.71 (3H, d, CH-CH₃).

Complex 36. To a solution of $(CO)_5Cr=C(Ph)(OCH_2CH_3)$ (4.4 g, 13 mmol) in Et₂O (50 ml) was added freshly distilled methylaziridine (1.4 ml). After 2 h work-up, as described for complex 29, gave complex 36 (2.65 g, 58%) as an oil. ¹H NMR (200 MHz, C_6D_6): δ 7.03 (5H, m), 2.55 (1H, m), 2.36 (1H, m), 1.99 (1H, m), 1.11 (3H, s), 0.29 (3H, d).

Table 2

Main interatomic distances (Å) and bond angles (°) for Cr(CO)₅(C₆H₉N) (13)

Cr(1)-C(11)	1.896(3)	C(11)-O(11)	1.135(3)
Cr(1)-C(12)	1.893(3)	C(12)-O(12)	1.138(3)
Cr(1)-C(13)	1.892(3)	C(13)-O(13)	1.134(3)
Cr(1)-C(14)	1.863(3)	C(14)O(14)	1.149(3)
Cr(1)-C(15)	1.894(3)	C(15)-O(15)	1.140(3)
Cr(1)-C(1)	2.123(2)	C(1)-C(2)	1.510(3)
C(1)-N(1)	1.300(3)	N(1)-C(3)	1.498(3)
N(1)-C(6)	1.474(3)	C(3)-C(4)	1.473(4)
C(4)-C(5)	1.296(4)	C(5)-C(6)	1.483(4)
C(12)Cr(1)C(11)	88.0(1)	C(13)-Cr(1)-C(12)	90.4(1)
C(14)-Cr(1)-C(11)	89.5(1)	C(14)-Cr(1)-C(12)	89.1(1)
C(14)-Cr(1)-C(13)	89.9(1)	C(15)-Cr(1)-C(11)	91.7(1)
C(15)-Cr(1)-C(13)	89.8(1)	C(15)-Cr(1)-C(14)	88.1(1)
O(11)-C(11)-Cr(1)	178.3(3)	O(12)-C(12)-Cr(1)	176.4(2)
O(13)-C(13)-Cr(1)	177.2(2)	O(14)-C(14)-Cr(1)	179.4(2)
O(15)-C(15)-Cr(1)	178. 4(2)		
C(6)-N(1)-C(3)	108.8(2)	C(4)-C(3)-N(1)	102.6(2)
C(5)-C(4)-C(3)	113.4(3)	C(6)-C(5)-C(4)	111.2(3)
C(5)-C(6)-N(1)	103.9(2)		

Atom	x/a	y/b	z/c	U_{eq}
Cr(1)	0.08253(3)	0.15674(3)	0.23976(4)	0.0389
C(11)	0.0137(2)	0.0200(2)	0.2807(3)	0.0512
O(11)	-0.0253(2)	-0.0634(2)	0.3048(2)	0.0731
C(12)	0.1879(2)	0.1157(2)	0.4067(3)	0.0511
O(12)	0.2533(2)	0.0875(2)	0.5014(3)	0.0736
C(13)	0.1550(2)	0.2912(2)	0.2017(3)	0.0533
O(13)	0.2003(2)	0.3696(2)	0.1741(3)	0.0795
C(14)	0.1547(2)	0.0805(2)	0.0919(3)	0.0510
O(14)	0.1984(1)	0.0337(2)	-0.0003(2)	0.0700
C(15)	-0.0197(2)	0.1934(2)	0.0658(3)	0.0516
O(15)	-0.0803(2)	0.2135(2)	-0.0410(2)	0.0778
C(1)	-0.0127(2)	0.2384(2)	0.3953(3)	0.0404
C(2)	-0.1286(2)	0.2212(3)	0.3635(4)	0.0625
N(1)	0.0144(1)	0.3042(2)	0.5182(2)	0.0412
C(3)	-0.0574(2)	0.3619(3)	0.6203(3)	0.0568
C(4)	0.0143(3)	0.4289(3)	0.7334(4)	0.0683
C(5)	0.1111(3)	0.4136(3)	0.7147(3)	0.0674
Cié	0.1223(2)	0.3322(3)	0.5823(4)	0.0577

Fractional atomic parameters	s for Cr(CO) ₅ (C ₆ H ₉ N)	(13)
------------------------------	---	------

Complex 37. A solution of complex 36 (2 g, 6 mmol) and PhC=CPh (2.2 g) in benzene (50 ml) was refluxed for 2 h. After evaporation of the solvent, the residue was chromatographed on silica gel. Elution with PE/CH_2Cl_2 (60/40) gave complex

Table 4

Main	interatomic	distances	(Å) for	Cr(CO)	(C. H.	ON	14)
Man	mieratorme	uistances	(A) 101	$CI(CO)_3$	(C21-1-19	On (14)

Cr(1)-C(11)	1.828(6)	C(11)-O(11)	1.157(6)	
Cr(1)-C(12)	1.829(5)	C(12)-O(12)	1.147(6)	
Cr(1)-C(13)	1.837(5)	C(13)-O(13)	1.155(6)	
Cr(1)C(81)	2.248(4)	Cr(1)-C(84)	2.218(4)	
Cr(1)-C(82)	2.211(4)	Cr(1)-C(85)	2.217(5)	
Cr(1)-C(83)	2.209(4)	Cr(1)-C(86)	2.223(5)	
C(1)-C(2)	1.524(7)	N(1)-C(1)	1.456(6)	
N(1)-C(3)	1.453(6)	C(1)-C(6)	1.545(6)	
C(3)-C(41)	1.52(1)	C(3)-C(42)*	1.500(9)	
C(51)-C(41)	1.28(1)	$C(52)^{*}-C(42)^{*}$	1.290(9)	
C(51)-C(6)	1.537(9)	C(2)-C(52)*	1.50(2)	
C(7) - C(1)	1.519(6)	C(8)-C(7)	1.335(6)	
C(9)-C(8)	1.509(6)	C(9)-N(1)	1.352(6)	
C(9)-O(9)	1.223(5)			
C(7)-C(71)	1.476(6)	C(8)-C(81)	1.485(6)	
C(71)-C(72)	1.391(6)	C(81)-C(82)	1.411(6)	
C(71)-C(76)	1.390(6)	C(81)-C(86)	1.415(6)	
C(72)-C(73)	1.358(7)	C(82)-C(83)	1.412(6)	
C(73)-C(74)	1.377(9)	C(83)-C(84)	1.385(7)	
C(74)-C(75)	1.355(9)	C(84)C(85)	1.405(7)	
C(75)-C(76)	1.383(7)	C(85)-C(86)	1.401(7)	

Table 3

Main bond angles (°) for $Cr(CO)_3(C_{21}H_{19}ON)$ (14)

C(11)-Cr(1)-C(13)	87.6(2)		
C(12)-Cr(1)-C(13)	87.7(2)		
C(12)-Cr(1)-C(11)	90.0(3)		
O(9)-C(9)-C(8)	128.1(4)	N(1)-C(9)-C(8)	105.5(4)
N(1)-C(9)-O(9)	126.3(4)	C(7)-C(8)-C(9)	108.8(4)
C(1)-C(7)-C(8)	110.4(4)	C(1)-N(1)-C(9)	113.8(4)
C(3)-N(1)-C(1)	121.0(4)	N(1)-C(1)-C(7)	101.2(3)
C(6)-C(1)-N(1)	108.0(4)	C(41)-C(3)-N(1)	108.5(5)
$C(42)^{*} - C(3) - N(1)$	108.6(7)	$C(52)^{*}-C(2)-C(1)$	103.0(7)
C(6)-C(51)-C(41)	125.0(7)	C(51)-C(41)-C(3)	124.0(7)
C(51) - C(6) - C(1)	108.7(5)	$C(42)^{*}-C(52)^{*}-C(2)$	135.2(14)
$C(52)^{*}-C(42)^{*}-C(3)$	117.5(12)		
C(86)-C(81)-C(82)	118.0(4)	C(76)-C(71)-C(72)	117.0(4)
C(83)-C(82)-C(81)	120.5(4)	C(73)-C(72)-C(71)	122.2(5)
C(84)-C(83)-C(82)	120.8(5)	C(74)-C(73)-C(72)	120.4(6)
C(85)-C(84)-C(83)	119.4(5)	C(75)-C(74)-C(73)	118.3(6)
C(86)C(85)C(84)	120.2(5)	C(76)-C(75)-C(74)	122.3(6)
C(86)-C(86)-C(81)	121.0(5)	C(75)-C(76)-C(71)	119.7(5)

Table 6

Fractional atomic parameters for $Cr(CO)_3(C_{21}H_{19}ON)$ (14)

Atom	x/a	y/b	z/c	U _{eq}
Cr(1)	0.25294(5)	0.17902(6)	0.11381(5)	0.0368
C(11)	0.1772(4)	0.0601(5)	0.1491(5)	0.0656
O(11)	0.1282(4) -	-0.0141(5)	0.1716(5)	0.1041
C(12)	0.1463(4)	0.1916(6)	-0.0009(4)	0.0633
O(12)	0.0802(3)	0.2032(6)	-0.0729(3)	0.0935
C(13)	0.1762(4)	0.2859(4)	0.1617(3)	0.0509
O(13)	0.1269(3)	0.3523(4)	0.1915(3)	0.0793
C(1)	0.3027(3)	0.4333(4)	-0.1803(3)	0.0433
C(2)	0.3527(4)	0.5509(5)	-0.1972(4)	0.0616
N(1)	0.3655(3)	0.3326(4)	-0.1965(3)	0.0545
C(3)	0.3791(5)	0.3126(6)	-0.2893(4)	0.0673
C(41)	0.2741(8)	0.3452(8)	-0.3657(5)	0.0585
C(51)	0.1908(7)	0.3875(7)	-0.3482(5)	0.0512
C(42)*	0.397(2)	0.431(1)	-0.330(1)	0.0881
C(52)*	0.384(2)	0.526(2)	-0.285(1)	0.0822
C(6)	0.1860(4)	0.4206(4)	-0.2487(3)	0.0517
C(7)	0.3082(3)	0.4126(4)	-0.0772(3)	0.0356
C(71)	0.2665(3)	0.5052(4)	-0.267(3)	0.0399
C(72)	0.3366(4)	0.5872(5)	0.0324(4)	0.0574
C(73)	0.3011(6)	0.6742(6)	0.0793(5)	0.0720
C(74)	0.1924(6)	0.6860(6)	0.0678(5)	0.0714
C(75)	0.1227(5)	0.6074(6)	0.0103(5)	0.0672
C(76)	0.1571(4)	0.5172(5)	-0.0373(4)	0.0515
C(8)	0.3574(3)	0.3092(4)	-0.0457(3)	0.0379
C(81)	0.3746(3)	0.2454(4)	0.0460(3)	0.0374
C(82)	0.3883(3)	0.3059(4)	0.1328(3)	0.0405
C(83)	0.4052(3)	0.2413(5)	0.2183(3)	0.0443
C(84)	0.4064(4)	0.1176(5)	0.2185(4)	0.0496
C(85)	0.3915(4)	0.0559(4)	0.1325(4)	0.0468
C(86)	0.3756(4)	0.1191(4)	0.0474(4)	0.0460
C(9)	0.3958(3)	0.2548(4)	-0.1229(3)	0.0459
O(9)	0.4474(3)	0.1628(3)	-0.1196(3)	0.0595

Cr(1)-C(11)	1.840(4)	C(11)-O(11)	1.158(4)	
Cr(1)-C(12)	1.836(3)	C(12)-O(12)	1.153(4)	
Cr(1)-C(13)	1.841(4)	C(13)-O(13)	1.154(4)	
Cr(1)-C(71)	2.258(3)	Cr(1)-C(72)	2.213(3)	
Cr(1)-C(73)	2.218(4)	Cr(1)-C(74)	2.216(4)	
Cr(1)-C(75)	2.217(3)	Cr(1)C(76)	2.229(3)	
C(1)-C(2)	1.501(5)	C(1)-N(1)	1.433(4)	
C(1)-C(8)	1.338(5)	N(1)-C(3)	1.495(5)	
N(1)-C(9)	1.401(4)	C(3)-C(4)	1.532(6)	
C(4)-C(5)	1.533(5)	C(5)-C(6)	1.548(5)	
C(6)-C(7)	1.576(4)	C(7)-C(8)	1.524(4)	
C(7)-C(9)	1.522(4)	C(9)-O(9)	1.202(4)	
C(7)-C(71)	1.513(4)	C(8)-C(81)	1.474(5)	
C(71)-C(72)	1.422(4)	C(81)-C(82)	1.379(6)	
C(71)-C(76)	1.405(4)	C(81)-C(86)	1.411(5)	
C(72)-C(73)	1.396(5)	C(82)-C(83)	1.388(6)	
C(73)-C(74)	1.418(5)	C(83)-C(84)	1.375(7)	
C(74)-C(75)	1.391(5)	C(84)-C(85)	1.368(8)	
C(75)–C(76)	1.413(5)	C(85)-C(86)	1.390(6)	
	· · · · · · · · · · · · · · · · · · ·			

Main interatomic distances (Å) for $Cr(CO)_3(C_{21}H_{21}ON)$ (30)

37 (0.60 g, 18%) as dark-red crystals, m.p. 275–280 °C. ¹H NMR (200 MHz, CDCl₃): δ 7.2 (20h, m), 3.45 (1H, t), 2.6 (1H, m), 2.25 (1H, m), 1.75 (3H, t). m/z 665 (M^+).

X-ray studies

In each case preliminary unit cell dimensions and symmetry information were derived from precession and Laue photographs. The crystal was then set up on a

Table 8

Main bond angles (°) for $Cr(CO)_3(C_{21}H_{21}ON)$ (30)

$\overline{C(12)-Cr(1)-C(11)}$	88.3(2)	O(11)-C(11)-Cr(1)	179.1(3)
C(13)-Cr(1)-C(11)	88.4(2)	O(12)-C(12)-Cr(1)	178.2(3)
C(13)-Cr(1)-C(12)	87.4(2)	O(13)-C(13)-Cr(1)	178.7(3)
N(1)-C(1)-C(2)	116.9(3)	C(8)-C(1)-C(2)	130.9(3)
C(8)-C(1)-N(1)	112.1(3)	C(3)-N(1)-C(1)	119.0(3)
C(9)-N(1)-C(1)	107.4(3)	C(9)-N(1)-C(3)	112.4(3)
C(4)-C(3)-N(1)	109.9(3)	C(5)-C(4)-C(3)	116.2(3)
C(6)-C(5)-C(4)	118.7(3)	C(7)-C(6)-C(5)	116.6(3)
C(8)-C(7)-C(6)	111.4(3)	C(9)-C(7)-C(6)	99.3(3)
C(9)-C(7)-C(8)	101.8(3)	C(7)-C(8)-C(1)	107.6(3)
C(7)-C(9)-N(1)	106.6(3)	O(9)-C(9)-N(1)	124.3(3)
O(9)-C(9)-C(7)	128.3(3)		
C(76)-C(71)-C(72)	117.6(3)	C(86)-C(81)-C(82)	117.4(4)
C(73)-C(72)-C(71)	121.2(3)	C(83)-C(82)-C(81)	122.2(5)
C(74)-C(73)-C(72)	120.0(3)	C(84)-C(83)-C(82)	119.5(5)
C(75)-C(74)-C(73)	119.7(3)	C(85)-C(84)-C(83)	119.9(5)
C(76)-C(75)-C(74)	119.9(3)	C(86)-C(85)-C(84)	121.0(5)
C(75)-C(76)-C(71)	121.6(3)	C(85)-C(86)-C(81)	119.9(5)

Table 7

Atom	x/a	у/b	z/c	U _{eq}
Cr(1)	0.13946(4)	0.13215(4)	0.49215(5)	0.0354
C(11)	0.0258(3)	0.1776(3)	0.5193(3)	0.0427
O(11)	-0.0460(2)	0.2049(2)	0.5365(2)	0.0568
C(12)	0.1539(2)	0.0288(3)	0.5991(3)	0.0407
O(12)	0.1646(2)	-0.0344(2)	0.6684(2)	0.0555
C(13)	0.2168(3)	0.2167(3)	0.6103(3)	0.0496
O(13)	0.2657(2)	0.2682(2)	0.6858(3)	0.0718
C (1)	0.0913(2)	0.4628(3)	0.1896(3)	0.0383
C(2)	0.1164(3)	0.5445(3)	0.1173(3)	0.0545
N(1)	0.0810(2)	0.4978(2)	0.2939(2)	0.0404
C(3)	-0.0002(3)	0.5756(3)	0.2881(3)	0.0525
C(4)	-0.0997(3)	0.5183(3)	0.2743(3)	0.0516
C(5)	-0.1245(3)	0.4226(3)	0.1948(3)	0.0460
C(6)	-0.0696(2)	0.3176(3)	0.2401(3)	0.0408
C(7)	0.0495(2)	0.3168(3)	0.2736(3)	0.0337
C(71)	0.1008(2)	0.2142(3)	0.3219(3)	0.0335
C(72)	0.0481(2)	0.1170(3)	0.3078(3)	0.0391
C(73)	0.1002(3)	0.0229(3)	0.3447(3)	0.0457
C(74)	0.2073(3)	0.0234(3)	0.4006(3)	0.0477
C(75)	0.2601(3)	0.1178(3)	0.4172(3)	0.0447
C(76)	0.2069(3)	0.2125(3)	0.3774(3)	0.0389
C(8)	0.0808(2)	0.3587(3)	0.1767(3)	0.0367
C(81)	0.0958(3)	0.2933(3)	0.0867(3)	0.0444
C(82)	0.0310(4)	0.2122(4)	0.0349(4)	0.0633
C(83)	0.0427(5)	0.1531(4)	-0.0529(4)	0.0831
C(84)	0.1219(5)	0.1750(5)	0.898(4)	0.0826
C(85)	0.1889(4)	0.2536(5)	-0.0387(4)	0.0744
C(86)	0.1783(3)	0.3124(4)	0.0501(3)	0.0605
C(9)	0.0767(2)	0.4084(3)	0.3573(3)	0.0376
O(9)	0.0794(2)	0.4103(2)	0.4545(2)	0.0459

Table 9 Fractional atomic parameters for $Cr(CO)_3(C_{21}H_{21}ON)$ (30)

Interatomic distances for compound 20 with esd's in parentheses

Cr(1)-C(11)	1.834(5)	C(8)-C(81)	1.475(6)
Cr(1)-C(12)	1.841(5)	C(9)-C(10)	1.490(6)
Cr(1)-C(13)	1.838(5)	C(9)-C(91)	1.477(6)
Cr(1)-C(91)	2.226(4)	C(10)-N(1)	1.353(6)
Cr(1)-C(92)	2.196(4)	C(10)-O(10)	1.229(5)
Cr(1)-C(93)	2.211(5)	C(11)-O(11)	1.153(6)
Cr(1)-C(94)	2.215(5)	C(12)-O(12)	1.148(6)
Cr(1)C(95)	2.219(5)	C(13)-O(13)	1.154(6)
Cr(1)C(96)	2.210(5)	C(81)-C(82)	1.377(6)
C(1)-C(2)	1.529(7)	C(81)-C(86)	1.397(6)
C(1)-C(3)	1.549(6)	C(82)-C(83)	1.387(7)
C(1)-C(8)	1.530(6)	C(83)-C(84)	1.385(8)
C(1)-N(1)	1.457(5)	C(84)-C(85)	1.355(8)
C(3)-C(4)	1.520(8)	C(85)-C(86)	1.383(7)
C(4)-C(5)	1.302(9)	C(91)-C(92)	1.428(6)
C(5)-C(6)	1.495(9)	C(91)-C(96)	1.413(6)
C(6)-C(7)	1.514(8)	C(92)-C(93)	1.389(6)
C(7)-N(1)	1.463(6)	C(93)-C(94)	1.398(6)
C(8)-C(9)	1.353(5)	C(94)C(95)	1.373(7)
C(95)-C(96)	1.418(6)		

Table 11	
----------	--

Interatomic angles for compound 20 with esd's in parentheses

$\overline{C(12)-Cr(1)-C(11)}$	90.5(2)	N(1)-C(7)-C(6)	112.2(5)
C(13)-Cr(1)-C(11)	89.2(2)	C(9) - C(8) - C(1)	110.0(4)
C(13)-Cr(1)-C(12)	87.4(2)	C(81)-C(8)-C(1)	119.7(3)
C(91)-Cr(1)-C(11)	90.2(2)	C(81) - C(8) - C(9)	130.4(4)
C(91)-Cr(1)-C(12)	160.2(2)	C(10) - C(9) - C(8)	108.2(4)
C(91)-Cr(1)-C(13)	112.4(2)	C(91) - C(9) - C(8)	128.6(4)
C(92) - Cr(1) - C(11)	86.9(2)	C(91) - C(9) - C(10)	123.2(3)
C(92) - Cr(1) - C(12)	122.7(2)	N(1) - C(10) - C(9)	107.3(3)
C(92)-Cr(1)-C(13)	149.7(2)	O(10) - C(10) - C(9)	128.4(4)
C(92)-Cr(1)-C(91)	37.7(2)	O(10) - C(10) - N(1)	124.3(4)
C(93) - Cr(1) - C(11)	111.5(2)	O(11) - C(11) - Cr(1)	178.7(4)
C(93)-Cr(1)-C(12)	94.2(2)	O(12) - C(12) - Cr(1)	179.3(5)
C(93) - Cr(1) - C(13)	159.1(2)	O(13) - C(13) - Cr(1)	178.0(5)
C(93)-Cr(1)-C(91)	67.2(2)	C(82) - C(81) - C(8)	121.0(4)
C(93) - Cr(1) - C(92)	36.7(2)	C(86)-C(81)-C(8)	120.1(4)
C(94) - Cr(1) - C(11)	148.2(2)	C(86) - C(81) - C(82)	118.8(4)
C(94)-Cr(1)-C(12)	89.6(2)	C(83) - C(82) - C(81)	120.9(4)
C(94) - Cr(1) - C(13)	122.5(2)	C(84) - C(83) - C(82)	119.3(5)
C(94)-Cr(1)-C(91)	79.5(2)	C(85)-C(84)-C(83)	120.4(4)
C(94)-Cr(1)-C(92)	66.6(2)	C(86)-C(85)-C(84)	120.8(5)
C(94)-Cr(1)-C(93)	36.8(2)	C(85)-C(86)-C(81)	119.8(5)
C(95)-Cr(1)-C(11)	156.8(2)	C(9)-C(91)-Cr(1)	127.5(3)
C(95)-Cr(1)-C(12)	112.4(2)	C(92)-C(91)-Cr(1)	70.0(2)
C(95)-Cr(1)-C(13)	94.6(2)	C(92)-C(91)-C(9)	122.7(4)
C(95)-Cr(1)-C(91)	67.2(2)	C(96)-C(91)-Cr(1)	70.8(2)
C(95)-Cr(1)-C(92)	78.2(2)	C(96)C(91)-C(9)	120.1(4)
C(95)-Cr(1)-C(93)	65.5(2)	C(96)-C(91)-C(92)	117.2(4)
C(96)-Cr(1)-C(11)	120.1(2)	C(91)-C(92)-Cr(1)	72.3(2)
C(96)-Cr(1)-C(12)	149.2(2)	C(93)-C(92)-Cr(1)	72.2(3)
C(96)-Cr(1)-C(13)	89.6(2)	C(93)-C(92)-C(91)	121.2(4)
C(96)-Cr(1)-C(91)	37.2(1)	C(92)C(93)-Cr(1)	71.0(3)
C(96)-Cr(1)-C(92)	66.8(2)	C(94)-C(93)-Cr(1)	71.8(3)
C(96)-Cr(1)-C(93)	78.4(2)	C(94)C(93)C(92)	120.6(4)
C(95)-Cr(1)-C(94)	36.1(2)	C(93)-C(94)-Cr(1)	71.4(3)
C(96)-Cr(1)-C(94)	66.5(2)	C(95)-C(94)-Cr(1)	72.1(3)
C(96)-Cr(1)-C(95)	37.3(2)	C(95)-C(94)-C(93)	119.7(4)
C(3)-C(1)-C(2)	111.7(4)	C(94)-C(95)-Cr(1)	71.8(3)
C(8)-C(1)-C(2)	111.9(4)	C(96)-C(95)-Cr(1)	71.0(3)
C(8)-C(1)-C(3)	109.5(4)	C(96)-C(95)-C(94)	120.8(4)
N(1)-C(1)-C(2)	110.6(4)	C(91)-C(96)-Cr(1)	72.0(2)
N(1)-C(1)-C(3)	111.2(4)	C(95)-C(96)-Cr(1)	71.7(3)
N(1)-C(1)-C(8)	101.6(3)	C(95)-C(96)-C(91)	120.5(4)
C(4)-C(3)-C(1)	114.2(4)	C(7)-N(1)-C(1)	124.6(4)
C(5)-C(4)-C(3)	125.9(5)	C(10)-N(1)-C(1)	112.8(4)
C(6)-C(5)-C(4)	125.0(5)	C(10) - N(1) - C(7)	122.6(4)
C(7)-C(6)-C(5)	113.2(5)		

four circle diffractometer and the accurate cell dimensions and orientation matrix were obtained from least-squares refinements of the setting angles of 25 well defined reflections.

Crystal data and crystal data collection parameters are listed in Table 1. Intensities of standard reflections showed no change during data collection. Corrections were made for Lorentz and polarization effects. Computations were performed

Fractional atomic coordinates	for compound 2	0 esd's in parenthese	s. $U_{cq} = [U_{11}^{\pi} U_{22}^{\pi} U_{33}]$]""1/3

Atom	x/a	у/Ь	z/c	U _{eq}
Cr(1)	0.12141(6)	0.15440(4)	0.08046(7)	0.0367
C(1)	0.6343(4)	0.0277(2)	0.3179(4)	0.0386
C(2)	0.7245(5)	0.0699(3)	0.2744(6)	0.0531
C(3)	0.7232(5)	-0.0153(3)	0.4479(5)	0.0483
C(4)	0.8258(5)	-0.0646(3)	0.4370(6)	0.0609
C(5)	0.7948(6)	-0.1156(3)	0.3506(7)	0.0682
C(6)	0.6519(6)	-0.1328(3)	0.2414(7)	0.0639
C(7)	0.5817(5)	0.0725(3)	0.1454(6)	0.0545
C(8)	0.5339(4)	0.0743(2)	0.3401(4)	0.0349
C(9)	0.4017(4)	0.0554(2)	0.2545(4)	0.0343
C(10)	0.4046(4)	-0.0040(2)	0.1701(4)	0.0399
C(11)	0.2625(5)	0.1934(3)	0.0596(5)	0.0490
C(12)	0.0106(5)	0.2306(3)	-0.0023(5)	0.0472
C(13)	0.0527(5)	0.1152(3)	-0.0889(5)	0.0551
C(81)	0.5888(4)	0.1300(2)	0.4436(4)	0.0351
C(82)	0.6230(5)	0.1165(2)	0.5763(5)	0.0455
C(83)	0.6768(5)	0.1686(3)	0.6738(5)	0.0535
C(84)	0.6953(5)	0.2352(3)	0.6365(5)	0.0485
C(85)	0.6617(5)	0.2491(2)	0.5061(6)	0.0472
C(86)	0.6089(4)	0.1974(2)	0.4083(5)	0.0441
C(91)	0.2722(4)	0.0848(2)	0.2428(4)	0.0363
C(92)	0.2668(4)	0.1511(2)	0.2987(4)	0.0410
C(93)	0.1424(5)	0.1782(3)	0.2819(5)	0.0470
C(94)	0.0183(4)	0.1417(3)	0.2070(5)	0.0477
C(95)	0.0200(4)	0.0776(3)	0.1528(5)	0.0470
C(96)	0.1456(4)	0.0487(2)	0.1686(5)	0.0413
N(1)	0.5391(4)	-0.0173(2)	0.2078(4)	0.0418
O(10)	0.3063(3)	-0.0356(2)	0.0800(4)	0.0526
O(11)	0.3528(4)	0.2169(2)	0.0480(4)	0.0687
O(12)	-0.0581(4)	0.2781(2)	-0.0549(4)	0.0650
O(13)	0.0119(5)	0.0921(3)	-0.1961(4)	0.0801

Interatomic distances for compound 21 with esd's in parentheses

Cr(1)-C(11)	1.844(3)	C(9)-C(91)	1.478(3)
Cr(1)-C(12)	1.842(3)	C(10)-O(10)	1.218(3)
Cr(1)-C(13)	1.847(3)	C(10)-N(1)	1.365(3)
Cr(1)-C(81)	2.236(2)	C(11)-O(11)	1.149(4)
Cr(1)-C(82)	2.205(3)	C(12)-O(12)	1.149(4)
Cr(1)-C(83)	2.224(3)	C(13)-O(13)	1.152(3)
Cr(1)-C(84)	2.207(3)	C(14)-O(14)	1.261(7)
Cr(1)-C(85)	2.209(3)	C(81)-C(82)	1.427(3)
Cr(1)-C(86)	2.210(2)	C(81)-C(86)	1.401(3)
C(1)-C(2)	1.527(4)	C(82)-C(83)	1.393(4)
C(1)-C(5)	1.564(3)	C(83)C(84)	1.410(5)
C(1)-C(9)	1.518(3)	C(84)-C(85)	1.392(5)
C(1)-N(1)	1.470(3)	C(85)C(86)	1.424(4)
C(3)-C(4)	1.295(4)	C(91)-C(92)	1.393(4)
C(4)-C(5)	1.497(4)	C(91)-C(96)	1.385(4)
C(5)-C(6)	1.552(4)	C(92)-C(93)	1.381(4)
C(6)-C(7)	1.529(4)	C(93)-C(94)	1.387(5)
C(7)-N(1)	1.471(3)	C(94)C(95)	1.372(5)
C(8)-C(9)	1.350(3)	C(95)C(96)	1.393(4)
C(8)-C(10)	1.495(3)	O(14)-H(14)	0.77(4)
C(8)-C(81)	1.477(3)		

Table 14

Interatomic bond angles for compound 21 with esd's in parentheses

C(12)-Cr(1)-C(11)	88.7(1)	N(1)-C(7)-C(6)	103.5(2)
C(13)-Cr(1)-C(11)	89.2(1)	C(10)-C(8)-C(9)	109.0(2)
C(13)-Cr(1)-C(12)	87.4(1)	C(81)-C(8)-C(9)	128.4(2)
C(81)-Cr(1)-C(11)	91.2(1)	C(81)-C(8)-C(10)	122.4(2)
C(81)-Cr(1)-C(12)	112.6(1)	C(8)-C(9)-C(1)	109.8(2)
C(81)-Cr(1)-C(13)	160.0(1)	C(91)-C(9)-C(1)	122.3(2)
C(82)-Cr(1)-C(11)	89.2(1)	C(91)-C(9)-C(8)	127.5(2)
C(82)-Cr(1)-C(12)	149.9(1)	O(10)-C(10)-C(8)	128.0(2)
C(82)-Cr(1)-C(13)	122.6(1)	N(1)-C(10)-C(8)	106.6(2)
C(82)-Cr(1)-C(81)	37.49(8)	N(1)-C(10)-O(10)	125.4(2)
C(83)-Cr(1)-C(11)	114.2(1)	O(11)-C(11)-Cr(1)	178.4(3)
C(83)-Cr(1)-C(12)	156.9(1)	O(12) - C(12) - Cr(1)	179.3(3)
C(83)-Cr(1)-C(13)	94.9(1)	O(13) - C(13) - Cr(1)	178.5(3)
C(83)-Cr(1)-C(81)	66.84(9)	C(8) - C(81) - Cr(1)	128.0(1)
C(83) - Cr(1) - C(82)	36.7(1)	C(82)-C(81)-Cr(1)	70.1(1)
C(84) - Cr(1) - C(11)	151.2(1)	C(82) - C(81) - C(8)	120.1(2)
C(84) - Cr(1) - C(12)	120.0(1)	C(86) - C(81) - Cr(1)	70.6(1)
C(84)-Cr(1)-C(13)	90.9(1)	C(86) - C(81) - C(8)	121.5(2)
C(84) - Cr(1) - C(81)	79.30(9)	C(86)-C(81)-C(82)	118.3(2)
C(84)-Cr(1)-C(82)	66.7(1)	C(81)-C(82)-Cr(1)	72.4(1)
C(84)-Cr(1)-C(83)	37.1(1)	C(83)-C(82)-Cr(1)	72.4(2)
C(85)-Cr(1)-C(11)	156.5(1)	C(83)-C(82)-C(81)	121.1(2)
C(85)-Cr(1)-C(12)	91.8(1)	C(82)-C(83)-Cr(1)	70.9(1)
C(85)-Cr(1)-C(13)	114.4(1)	C(84)-C(83)-Cr(1)	70.8(2)
C(85)-Cr(1)-C(81)	66.95(9)	C(84)-C(83)-C(82)	119.9(2)
C(85)-Cr(1)-C(82)	78.7(1)	C(83)-C(84)-Cr(1)	72.1(2)
C(85)-Cr(1)-C(83)	66.3(1)	C(85)-C(84)-Cr(1)	71.7(2)
C(86)-Cr(1)-C(11)	119.0(1)	C(85)-C(84)-C(83)	119.9(2)
C(86)-Cr(1)-C(12)	88.3(1)	C(84)-C(85)-Cr(1)	71.5(1)
C(86) - Cr(1) - C(13)	151.4(1)	C(86) - C(85) - Cr(1)	71.2(1)
C(86) - Cr(1) - C(81)	36.72(9)	C(86)-C(85)-C(84)	120.2(3)
C(86) - Cr(1) - C(82)	66.71(9)	C(81) - C(86) - Cr(1)	72.7(1)
C(86) - Cr(1) - C(82)	78.7(1)	C(85)-C(86)-Cr(1)	71.2(1)
C(85) - Cr(1) - C(84)	36.7(1)	C(85) - C(86) - C(81)	120.5(2)
C(86)-Cr(1)-C(84)	67.1(1)	C(92)-C(91)-C(9)	119.7(2)
C(86) - Cr(1) - C(85)	37.6(1)	C(96)-C(91)-C(9)	121.7(2)
C(5)-C(1)-C(2)	111.5(2)	C(96)-C(91)-C(92)	118.7(2)
C(9)-C(1)-C(2)	110.8(2)	C(93) - C(92) - C(91)	120.5(3)
C(9) - C(1) - C(5)	118.3(2)	C(94)-C(93)-C(92)	120.3(3)
N(1) - C(1) - C(2)	111.7(2)	C(95) - C(94) - C(93)	119.7(3)
N(1)-C(1)-C(5)	101.4(2)	C(96)-C(95)-C(94)	120.2(3)
N(1)-C(1)-C(9)	102.3(2)	C(95)-C(96)-C(91)	120.6(3)
C(5)-C(4)-C(3)	124.6(3)	C(7) - N(1) - C(1)	112.9(2)
C(4)-C(5)-C(1)	113.4(2)	C(10) - N(1) - C(1)	112.0(2)
C(6) - C(5) - C(1)	101.0(2)	C(10) - N(1) - C(7)	123.1(2)
C(6) - C(5) - C(4)	110.4(2)	C(7)-C(6)-C(5)	105.4(2)

by use of the CRYSTALS system [22] adapted for a MICROVAX-II computer. Atomic scattering factors for neutral Cr, O, C, N and H were taken from ref. 23. Anomalous dispersion was taken into account.

The positions of Cr atom were derived by Harker vector analysis of three dimensional Patterson maps. All remaining non-hydrogen atoms were found from

Atom	x/a	v/b	z/c	<i>U</i>
 Cr(1)	0.10599(5)	0.27019(4)	0.21799(3)	0.0370
C(1)	-0.0107(3)	-0.2080(3)	0.3199(2)	0.0371
C(2)	0.0578(4)	-0.3566(3)	0.3801(2)	0.0539
$\vec{C}(3)$	-0.1664(6)	-0.0628(4)	0.0745(3)	0.0728
C(4)	-0.1653(3)	-0.0629(3)	0.1670(2)	0.0471
C(5)	-0.1378(3)	-0.1873(3)	0.2508(2)	0.0401
ció	-0.2962(3)	-0.1658(3)	0.3264(2)	0.0486
C(7)	-0.2901(3)	-0.0822(4)	0.3956(2)	0.0511
C(8)	0.0998(3)	-0.0452(2)	0.3065(2)	0.0322
C(9)	0.1272(3)	-0.1591(2)	0.2738(2)	0.0334
C(10)	-0.0592(3)	-0.0073(3)	0.3739(2)	0.0373
C(11)	-0.0666(4)	0.2709(3)	0.1679(2)	0.0502
C(12)	-0.0455(4)	0.3704(3)	0.3088(2)	0.0532
C(13)	0.0813(4)	0.4376(3)	0.1314(2)	0.0497
C(14)	-0.4970(7)	0.3654(6)	0.4402(7)	0.1195
C(81)	0.1965(3)	0.0413(2)	0.2771(2)	0.0336
C(82)	0.2654(3)	0.0690(3)	0.1755(2)	0.0422
C(83)	0.3546(4)	0.1521(3)	0.1457(2)	0.0523
C(84)	0.3719(4)	0.2152(3)	0.2155(3)	0.0533
C(85)	0.3050(4)	0.1902(3)	0.3148(2)	0.0490
C(86)	0.2153(3)	0.1041(3)	0.3456(2)	0.0410
C(91)	0.2757(3)	-0.2397(2)	0.2132(2)	0.0377
C(92)	0.4321(3)	-0.2719(3)	0.2368(2)	0.0483
C(93)	0.5723(4)	-0.3443(3)	0.1796(3)	0.0593
C(94)	0.5591(4)	-0.3868(3)	0.0983(3)	0.0599
C(95)	0.4058(4)	-0.3567(4)	0.0749(3)	0.0624
C(96)	0.2641(3)	-0.2841(3)	0.1326(2)	0.0511
O(10)	-0.1313(2)	0.0952(2)	0.4108(1)	0.0484
O(11)	-0.1748(3)	0.2693(3)	0.1387(3)	0.0687
O(12)	-0.1397(3)	0.4341(3)	0.3649(2)	0.0758
O(13)	0.0637(4)	0.5435(2)	0.0791(2)	0.0665
O(14)	-0.4624(4)	0.2378(4)	0.4735(4)	0.1096
N(1)	-0.1139(2)	-0.1089(2)	0.3847(1)	0.0382

Table 15 Fractional atomic coordinates for compound 21. $U_{12} = 1/3[U_{11} + U_{22} + U_{23}]$

successive electron density maps. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were located on a difference Fourier map and their coordinates refined. They were assigned an overall refinable isotropic thermal parameter. Refinement was by least squares with a large-block approximation to the normal matrix. In complex 14, the C(1), N(1), C(3), C(41), C(51) ring is disordered, with a statistical distribution of the two C(41) and C(51) carbon atoms around a pseudo-mirror plane containing the C(5) and C(6) carbon atoms. The criteria for a satisfactory completed analysis were the ratios of the parameter shifts to standard deviations, and no significant features in the final difference map.

In Tables 2–18 are listed main interatomic distances, bond angles and fractional atomic parameters for compounds 13, 14, 20, 21, 30, and 34.

Full Tables of C-H bond lengths and thermal parameters, and lists of calculated and observed structure factors are available from the authors.

Table	16
-------	----

Interatomic distances for compound 34 with esd's in parentheses

Cr(1)-C(11)	1.836(4)	C(11)O(11)	1.155(5)
Cr(1)-C(12)	1.842(4)	C(12)-O(12)	1.149(5)
Cr(1)-C(13)	1.838(4)	C(13)-O(13)	1.151(4)
Cr(1)-C(1)	2.160(3)	Cr(1) - N(1)	2.133(3)
Cr(1)-C(8)	2.312(3)	Cr(1)-C(9)	2.231(3)
Cr(1)-C(10)	2.206(3)		.,
C(1)-N(1)	1.401(4)	N(1)C(3)	1.487(5)
C(3)-C(4)	1.524(5)	C(4)-C(6)	1.520(5)
C(6)-C(7)	1.544(5)	C(7)-C(8)	1.528(5)
C(8)-C(9)	1.406(5)	C(9)-C(10)	1.441(5)
C(1)-C(10)	1.403(5)	N(1)-C(7)	1.492(4)
C(6)-O(1)	1.199(4)		• •
C(1)-C(2)	1.498(5)	C(4)-C(5)	1.512(6)
C(7)-C(71)	1.542(5)	C(8)-C(81)	1.501(5)
C(71)-C(72)	1.363(6)	C(81)-C(82)	1.384(5)
C(71)-C(76)	1.383(5)	C(81)-C(86)	1.362(5)
C(72)-C(73)	1.385(6)	C(82)-C(83)	1.381(6)
C(73)-C(74)	1.345(8)	C(83)-C(84)	1.347(7)
C(74)-C(75)	1.336(8)	C(84)-C(85)	1.356(7)
C(75)-C(76)	1.379(7)	C(85)-C(86)	1.392(6)
C(9)-C(91)	1.502(5)	C(10)-C(101)	1.506(5)
C(91)-C(92)	1.374(5)	C(101)-C(102)	1.392(5)
C(91)-C(96)	1.371(5)	C(101)-C(106)	1.379(5)
C(92)-C(93)	1.367(6)	C(102)-C(103)	1.379(5)
C(93)-C(94)	1.349(7)	C(103)-C(104)	1.365(6)
C(94)-C(95)	1.354(7)	C(104)-C(105)	1.371(6)
C(95)-C(96)	1.414(6)	C(105)-C(106)	1.381(6)

Bond angles for compound 34 with esd's in parentheses

$\overline{C(7)-N(1)-C(1)}$	122.1(3)	C(7)-N(1)-C(3)	108.8(3)	
C(4)-C(3)-N(1)	103.5(3)	C(6)-C(4)-C(3)	104.4(3)	
C(7)-C(6)-C(4)	109.8(3)	C(6)-C(7)-N(1)	99.2(3)	
C(8)-C(7)-N(1)	104.0(3)	C(9)-C(8)-C(7)	117.0(3)	
C(10)-C(9)-C(8)	121.2(3)	C(9)-C(10)-C(1)	119.1(3)	
C(12)-Cr(1)-C(11)	86.5(2)	C(1)-Cr(1)-C(11)	132.9(2)	
C(13)-Cr(1)-C(11)	87.7(2)	C(1)-Cr(1)-C(12)	87. 4(2)	
C(13)-Cr(1)-C(12)	88.9(2)	C(1)-Cr(1)-C(13)	138.7(2)	
N(1)-Cr(1)-C(11)	168.9(1)	N(1)-Cr(1)-C(12)	98.2(2)	
N(1)-Cr(1)-C(13)	102.3(2)	N(1)-Cr(1)-C(1)	38.1(1)	
C(8)-Cr(1)-C(11)	110.6(1)	C(8)-Cr(1)-C(12)	162.8(2)	
C(8)-Cr(1)-C(13)	94.0(2)	C(8) - Cr(1) - C(1)	79.2(1)	
C(9)-Cr(1)-C(13)	125.7(2)	C(9)-Cr(1)-C(11)	92.9(2)	
C(9)-Cr(1)-C(1)	67.9(1)	C(8)-Cr(1)-N(1)	64.6(1)	
C(9)-Cr(1)-N(1)	77.5(1)	C(9)-Cr(1)-C(12)	145.4(2)	
C(9)-Cr(1)-C(8)	36.0(1)	C(10)-Cr(1)-C(11)	102.3(2)	
C(10)-Cr(1)-C(12)	108.5(2)	C(10)-Cr(1)-C(13)	160.1(2)	
C(10)-Cr(1)-C(1)	37.5(1)	C(10)-Cr(1)-N(1)	66.7(1)	
C(10)-Cr(1)-C(8)	66.5(1)	C(10)-Cr(1)-C(9)	37.9(1)	
O(11)-C(11)-Cr(1)	175.7(4)	O(12)-C(12)-Cr(1)	178.9(4)	
O(13)-C(13)-Cr(1)	177.2(4)			
C(2)-C(1)-Cr(1)	130.3(3)	N(1)-C(1)-Cr(1)	69.9(2)	
N(1)-C(1)-C(2)	118.1(3)	C(10)-C(1)-Cr(1)	73.0(2)	

Table 17 (continued)

C(10)-C(1)-C(2)	125.1(3)	C(10)-C(1)-N(1)	116.7(3)
C(1)-N(1)-Cr(1)	72.0(2)	C(3) - N(1) - Cr(1)	127.0(2)
C(3)-N(1)-C(1)	123.5(3)	C(7) - N(1) - Cr(1)	96.7(2)
C(5)-C(4)-C(3)	115.7(4)	C(6)-C(4)-C(5)	112.9(4)
O(1)-C(6)-C(4)	125.0(4)	C(7)-C(6)-O(1)	125.2(4)
C(71)-C(7)-N(1)	114.0(3)	C(71)-C(7)-C(6)	109.8(3)
C(8)-C(7)-C(6)	115.1(3)	C(8)-C(7)-C(71)	113.8(3)
C(72)-C(71)-C(7)	121.6(4)	C(76)-C(71)-C(7)	121.4(4)
C(76)C(71)C(72)	117.0(4)	C(73)-C(72)-C(71)	121.4(5)
C(74)-C(73)-C(72)	120.6(5)	C(75)-C(74)-C(73)	119.0(5)
C(76)-C(75)-C(74)	121.7(5)	C(75)-C(76)-C(71)	120.3(5)
C(7)-C(8)-Cr(1)	88.7(2)	C(81)-C(8)-Cr(1)	132.7(2)
C(81)-C(8)-C(7)	118.3(3)	C(9)-C(8)-Cr(1)	68.9(2)
C(9)-C(8)-C(81)	119.8(3)	C(82)-C(81)-C(8)	119.1(3)
C(86)-C(81)-C(8)	123.3(4)	C(86)-C(81)-C(82)	117.6(4)
C(83)-C(82)-C(81)	121.1(4)	C(84)-C(83)-C(82)	120.4(4)
C(85)-C(84)-C(83)	119. 6(4)	C(86)-C(85)-C(84)	120.6(5)
C(85)-C(86)-C(81)	120.7(4)	C(8)-C(9)-Cr(1)	75.1(2)
C(91)-C(9)-Cr(1)	133.5(2)	C(91)-C(9)-C(8)	119.5(3)
C(10)-C(9)-Cr(1)	70.1(2)	C(10)-C(9)-C(91)	118.9(3)
C(92)-C(91)-C(9)	117.1(3)	C(96)-C(91)-C(9)	125.0(4)
C(96)-C(91)-C(92)	117.7(4)	C(93)-C(92)-C(91)	122.4(4)
C(94)-C(93)-C(92)	120.5(5)	C(95)-C(94)-C(93)	118.9(4)
C(96)C(95)C(94)	121.4(5)	C(95)-C(96)-C(91)	119.1(4)
C(1)-C(10)-Cr(1)	69.5(2)	C(9)-C(10)-Cr(1)	72.0(2)
C(101)-C(10)-Cr(1)	131.0(2)	C(101)-C(10)-C(1)	119.3(3)
C(101)-C(10)-C(9)	121.6(3)	C(102)-C(101)-C(10)	118.9(3)
C(106)-C(101)-C(10)	122.6(3)	C(106)-C(101)-C(102)	118.5(3)
C(103)-C(102)-C(101)	120.5(4)	C(104)-C(103)-C(102)	120.0(4)
C(105)-C(104)-C(103)	120.5(4)	C(105)-C(106)-C(101)	120.8(4)
C(106)-C(105)-C(104)	119.7(4)		

Fractional atomic parameters for compound 34 with esd's in parentheses

Atom	x/a	у/b	z/c	U _{eq}
Cr(1)	0.86758(3)	0.01222(5)	0.32025(4)	0.0365
C(11)	0.8797(2)	0.1363(4)	0.2432(3)	0.0486
O(11)	0.8889(2)	0.2185(3)	0.1992(2)	0.0686
C(12)	0.8614(2)	0.1261(4)	0.4076(3)	0.0507
O(12)	0.8568(2)	0.1982(3)	0.4611(2)	0.0715
C(13)	0.9683(2)	0.0112(4)	0.3444(3)	0.0532
O(13)	1.0312(2)	0.0152(4)	0.3607(3)	0.0756
C(1)	0.7714(2)	-0.0698(3)	0.3694(2)	0.0363
C(2)	0.7244(2)	-0.0306(4)	0.4413(2)	0.0482
N(1)	0.8343(2)	-0.1379(3)	0.3941(2)	0.0363
C(3)	0.8587(2)	-0.1685(4)	0.4882(2)	0.0482
C(4)	0.9362(2)	-0.2177(4)	0.4821(3)	0.0497
C(5)	0.9592(3)	-0.3160(5)	0.5473(3)	0.0680
C(6)	0.9375(2)	-0.2560(4)	0.3852(3)	0.0478
O(1)	0.9890(2)	-0.3017(3)	0.3536(2)	0.0647
C(7)	0.8619(2)	-0.2308(3)	0.3343(2)	0.0368
C(71)	0.8152(2)	-0.3455(3)	0.3286(2)	0.0438
C(72)	0.7401(3)	-0.3419(4)	0.3239(4)	0.0652

Table 18	(continued)

Atom	x/a	y/b	z/c	U _{eq}
C(73)	0.6983(3)	- 0.4449(5)	0.3146(4)	0.0792
C(74)	0.7310(4)	0.5519(5)	0.3115(3)	0.0677
C(75)	0.8046(4)	-0.5576(4)	0.3169(4)	0.0722
C(76)	0.8477(3)	-0.4566(4)	0.3257(3)	0.0626
C(8)	0.8652(2)	-0.1672(3)	0.2448(2)	0.0351
C(81)	0.9132(2)	-0.2190(4)	0.1779(2)	0.0414
C(82)	0.8874(2)	-0.3146(4)	0.1262(3)	0.0513
C(83)	0.9284(3)	-0.3620(4)	0.0613(3)	0.0638
C(84)	0.9953(3)	-0.3172(5)	0.0482(3)	0.0687
C(85)	1.0219(3)	-0.2241(6)	0.0983(4)	0.0740
C(86)	0.9811(2)	-0.1752(5)	0.1637(3)	0.0632
C(9)	0.8044(2)	-0.0961(3)	0.2156(2)	0.0336
C(91)	0.8952(2)	-0.0790(3)	0.1172(2)	0.0372
C(92)	0.7253(2)	-0.1403(4)	0.0793(3)	0.0572
C(93)	0.7061(3)	-0.1393(5)	-0.0106(3)	0.0693
C(94)	0.7452(3)	-0.0746(5)	-0.0659(3)	0.0732
C(95)	0.8043(4)	-0.0121(5)	-0.0310(3)	0.0784
C(96)	0.8262(3)	-0.0147(4)	0.0615(3)	0.0638
C(10)	0.7551(2)	-0.0500(3)	0.2776(2)	0.0325
C(101)	0.6864(2)	0.0180(3)	0.2464(2)	0.0362
C(102)	0.6180(2)	-0.0337(4)	0.2559(3)	0.0479
C(103)	0.5539(2)	0.0254(4)	0.2272(3)	0.0562
C(104)	0.5574(2)	0.1358(5)	0.1898(3)	0.0574
C(105)	0.6242(3)	0.1875(4)	0.1784(3)	0.0638
C(106)	0.6885(2)	0.1285(4)	0.2068(3)	0.0516

References

- 1 E.O. Fischer, A. Maasböl, Angew. Chemie. Int. Ed. Engl., 3 (1964) 580.
- 2 E.O. Fischer, K.H. Dör, Chem. Ber., 103 (1970) 1273.
- 3 C.P. Casey, A.J. Shusterman, N. Vollendorf, K.J. Haller, J. Am. Chem. Soc., 104 (1982) 2417.
- 4 C. Alvarez, H. Rudler, J.C. Daran, Y. Jeannin, J. Chem. Soc., Chem. Commun., 106 (1984) 375.
- 5 R.L. Banks, G.C. Bailey, Ind. and Eng. Chem., 3 (1964) 170.
- 6 T.J. Katz, S.I. Lee, J. Am. Chem. Soc., 102 (1980) 422.
- 7 K.H. Dötz, Angew. Chem. Int. Ed. Engl., 14 (1975) 2033.
- 8 K.H. Dötz, M. Popau, G. Möller, J. Organomet. Chem., 334 (1987) 57.
- 9 K.S. Chan, G.A. Peterson, T.A. Brandvold, K.L. Faron, C.A. Challener, C. Hyldahl, W.D. Wulff, J. Organomet. Chem., 334 (1987) 9.
- 10 A. Parlier, H. Rudler, N. Platzer, M. Fontanille, A. Soum, J. Chem. Soc., Dalton, (1987) 1041.
- 11 Y.C. Xu, W. Wulff, J. Organomet. Chem., 52 (1987) 3263.
- 12 J. Chem. Soc., Chem. Commun., in press.
- 13 A. Parlier, H. Rudler, R. Yefsah, C. Alvarez, J. Organomet. Chem., 328 (1987) C21.
- 14 Unpublished results.
- 15 J.A. Connor, E.O. Fischer, J. Chem. Soc., A, (1969) 578.
- 16 A. Parlier, H. Rudler, J.C. Daran, C. Alvarez, F. Delgado Reyes, J. Organomet. Chem., 337 (1987) 339.
- 17 J.T. Guy, D.W. Bennett, Transition Met. Chem., 9 (1984) 43.
- 18 A. Yamashida, Tetrahedron Lett., 26 (1986) 5915.
- 19 W.R. Bamford, T.S. Stevens, J. Chem. Soc., (1952) 467.
- 20 G. Wittig, H. Tenhaeff, W. Schoch, G. Koenig, Ann., 1 (1951) 572.
- 21 M. Sommelet, C.R. Acad. Sci. Paris, 56 (1937) 205.
- 22 J.R. Carruthers and D.J. Watkin, Crystals, an advanced crystallographic program system, Chemical Crystallography Laboratory University of Oxford, England, 1985.
- 23 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, England, 1974, Vol. 4.